Optimization of Acidic Ferric Chloride Leaching of a Copper Concentrate

M. R. Patil¹, S. J. G. Krishn², P. Reddy³, B. P. Ravi*⁴, C. Rudrappa⁵ & P. S. Kumar⁶
¹-⁶ VSKUPG Centre, Nandihalli, Karnataka, India 583119

Abstract: The hydrometallurgical process for extracting copper offers an ecologically and economically viable way to extract metal locally independent of smelters. Optimization of Bench scale acidic ferric chloride leaching of copper concentrate obtained from flotation tests on a low grade copper ore from Mine dumps of Chitradurga, Karnataka have been carried out by statistically designed experiments. Factors like size, leaching time, Ferric chloride concentration and reactant weight ratio, have been varied. About 90% of copper was leached out from copper concentrates assaying 23.00% Cu, 6.68% SiO₂, 2.60% Al₂O₃, 4.20% CaO, 3.20% MgO, 4.31% Alkalis, 26.46% Fe (T), 24.90% S(T) and 0.45% Zn under optimum conditions of -100 mesh, 6 hours leach time, 6 M FeCl₃ Concentration, pH 2, 2.70 FeCl₃/CuFeS₂ weight ratio, 95 °C and 200 rpm agitation.

Key words: chalcopyrite, flotation, leaching.

1. Introduction

India is yet to be self sufficient in copper and has to import it. Hence beneficiation, utilization of low grade copper from copper mines needs a relook, though due to open market global principle domestic copper market is under recession cycle. The review of literature on geology of copper indicated that small copper resources in Karnataka like Chitradurga, Kalyadi, Kallur, Machanur and Thinitini, were mined, concentrated locally and extracted in Indian pyrometallurgical smelters[1]. The increase in demand for copper led to exploitation of small and low grade copper deposits located away from pyrometallurgical smelters like small copper resources in Karnataka. The problems associated with such small deposits are fall in tenor, low capacity, increased production costs, dependence on smelters and pollution problems of conventional smelters. Hydrometallurgical process offers scope to extract metal economically, ecologically and independent of smelters using ammonia solvent with oxygen as oxidant or acidic ferric chloride as oxidant leachant. Pike et.al. (1930), Haver et.al. (1974, 1975), Nagaraj et.al. (1978), Illagovan et.al.(1985) and Ravi et.al.(1987) opted for the acidic ferric chloride leaching of chalcopyrite concentrates due to fast reactivity, ease of regeneration, high solubility, stability of reactants - products and low costs

2. Experimental

2.1. Material

Flotation tests on a low grade copper ore from Mine dumps of Chitradurga, Karnataka were carried out. Copper concentrates assaying 23.00% Cu, 6.68%SiO₂, 2.60% Al₂O₃, 4.20% CaO, 3.20% MgO, 4.31% Alkalis, 26.46% Fe (T), 24.90% S(T) and 0.45% Zn were produced during bulk locked flotation tests which formed the raw material for leaching tests. Dilute HCl was used to adjust pH. Commercial grade FeCl₃ >95%, was used as lechant.

2.2. Methods

Weighed amounts of chalcopyrite concentrates of stipulated size is added after the solution reached the designated temperature. Evaporation losses are minimized by placing the funnel over the flask. After stipulated time the contents of flask are filtered and samples are withdrawn for analysis. Factors like size, leaching time, leaching temperature, Ferric chloride concentration, pH, reactant weight ratio, reaction temperature, and agitation rpm have been varied.

3. Results and discussion

3.1. Factorial experiment

Since acidic FeCl₃ leaching is a heterogeneous reaction, experiments were carried out to study effect of factors like particle size, leaching time, weight ratio of reactants, ferric chloride concentration were varied at two levels to study the effect of factors, their interactions and factors significantly affecting the copper extraction. The results were analyzed by Yate’s algorithm method. The significance of factors was established. A regression equation relating factors to % Cu extraction was obtained. The optimum conditions were arrived by method of steepest ascent. The temperature, rpm of stirrer were kept constant at 97°C and 200 rpm respectively based on the previous leaching amenability tests Krishna et.al. (2016).The conditions and levels of 2⁴ Factorial experiments is given in Table 1. The result of 2⁴ Factorial experiment varying size, reactant weight ratio, concentration of FeCl₃ and leaching time, is given in Table 2.
The results indicate the following:

1. FeCl₃ and CuFeS₂ reactant weight ratio was the most significant factor which increases the % Cu extraction.
2. FeCl₃ concentration was the next most significant factor.
3. Interaction factors of leaching time and FeCl₃ and CuFeS₂ reactant weight ratio was third most significant factor which increases % Cu extraction with an increase in time and reactant weight ratio.
4. Size of the concentrate was the next most significant factor which increases the % Cu extraction with increase in fineness.
5. Leaching time was also the significant factor which increases the % Cu extraction.
6. The regression model obtained was:

\[y = 58.30 + 4.035 a + 14.32 b + 12.145 c + 0.765 d - 0.595 ab, \]

where a, b, c and d are time, reactant ratio, concentration of leachant and size.

3.1.1. Effect of FeCl₃ concentration and FeCl₃ and CuFeS₂ weight ratio: The results indicate that the copper extraction increases significantly with increase in FeCl₃ and CuFeS₂ weight ratio and then attains saturation with values exceeding 3. This is attributed to reaction (1) with FeCl₃ and CuFeS₂ weight ratio of 2.67.

\[\text{CuFeS}_2 + 3 \text{FeCl}_3 = \text{CuCl} + 4\text{FeCl}_2 + 2S \] (1)

However leaching of CuFeS₂ further continues with additional FeCl₃ as attributed to reaction (2) with FeCl₃ and CuFeS₂ weight ratio of 3.54

\[\text{CuFeS}_2 + 4 \text{FeCl}_3 = \text{CuCl}_2 + 5\text{FeCl}_3 + 2S \] (2)

But the CuCl₂ along with acidic ferric chloride further reacts with CuFeS₂ as attributed to reaction (3).

\[\text{CuFeS}_2 + \text{CuCl}_2 + 2 \text{FeCl}_3 = 2\text{CuCl} + 3\text{FeCl}_2 + 2S \] (3)

Incidentally the combination of equations (2) and (3) gives equation (1). Haver et. al. (1974 and 1975) employed low FeCl₃ concentration and high retention time for leaching while Nagaraj et.al. (1978), Illagovan et.al.(1985) opted for high FeCl₃ concentration and low retention time for leaching. The mechanism of leaching is based on initial mass transfer and by diffusion at later stages of leaching.

3.1.2. Effect of size: As leaching is a heterogeneous reaction, larger particle size – finer particle size enhances the kinetics of dissolution. The leaching tests were done at 40%, 60% and 100% minus 400 mesh. Leaching at maximum fineness size of 100% - 270 mesh has been chosen for final test work, but a regrinding of a concentrate and dewatering is needed which is a cost intensive operation. Nagaraj et.al. (1978) and Illagovan et.al. (1985) opted for 80% - 270 mesh size for leaching of chalcopyrite concentrates. Hence, for subsequent tests the as received flotation concentrate without grinding is used.

3.1.3. Effect of time: The leaching time was varied from 2 to 4 hours. The extraction of copper increases with time up to 4 hours. The kinetics may be slow after 4 hours leaching perhaps due to diffusion kinetics through the S layer over chalcopyrite nucleus (Krishna et.al. (2016)). Haver et. al. (1974 and1975) employed low FeCl₃ concentration and high retention time for leaching (> 6 hours) while Nagaraj et.al. (1978), Illagovan et.al. (1985) opted for high FeCl₃ concentration and low retention time for leaching.

3.2 Test under optimum conditions

The optimum conditions were arrived by method of steepest ascent. The tests were conducted under optimum conditions of 4 hours leaching time, 97°C, 200 rpm, 4M FeCl₃ Concentration, FeCl₃/CuFeS₂ molar weight ratio of 3.62, and pH of 2 on ungrounded copper flotation concentrates as well as ground concentrates. The results are given in Table 3.
Table 3: Optimization by method of steepest ascent

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Factors</th>
<th>Not. Levels</th>
<th>Base Step</th>
<th>Step Limit</th>
<th>New Step</th>
<th>Limit level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time hrs</td>
<td>a</td>
<td>3-1</td>
<td>0.4</td>
<td>6.0</td>
<td>3.035</td>
<td></td>
</tr>
<tr>
<td>FeCl₃/CuFeS₂</td>
<td>b</td>
<td>2.725-0.455</td>
<td>14.320</td>
<td>0.65</td>
<td>3.54</td>
<td></td>
</tr>
<tr>
<td>FeCl₃, Conc M</td>
<td>c</td>
<td>2.5-0.5</td>
<td>12.145</td>
<td>0.62</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Size %400#</td>
<td>d</td>
<td>60%-20%</td>
<td>76.75</td>
<td>0.765</td>
<td>14%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Table 3: Optimization by method of steepest ascent

<table>
<thead>
<tr>
<th>Trial No</th>
<th>hrs</th>
<th>FeCl₃/CuFeS₂</th>
<th>Conc M</th>
<th>d</th>
<th>Size %400#</th>
<th>% Cu Extracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.4</td>
<td>2.925</td>
<td>3.12</td>
<td>60</td>
<td>88.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.8</td>
<td>3.575</td>
<td>3.74</td>
<td>66</td>
<td>92.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.2</td>
<td>3.575</td>
<td>4.32</td>
<td>80</td>
<td>93.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>3.575</td>
<td>4.00</td>
<td>73</td>
<td>93.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.0</td>
<td>2.700</td>
<td>6.00</td>
<td>60</td>
<td>92.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>2.700</td>
<td>6.00</td>
<td>40</td>
<td>98.0</td>
<td></td>
</tr>
</tbody>
</table>

~ 90% of copper was leached out from copper concentrates assaying 23.00% Cu, 6.68%SiO₂, 2.60% Al₂O₃, 4.20% CaO, 3.20% MgO, 4.31% Alkalis, 26.46% Fe (T), 24.90% S(T) and 0.45% Zn at ungrounded concentrate -100 mesh, 6 hours leach time, 6 M FeCl₃ Concentration, pH 2, 2.7 FeCl₃/CuFeS₂ weight ratio, 95° C and 200 rpm agitation by scaling up the weight of CuFeS₂ from 30 to 500 gms. The results are a combination of previous works of Haver et. al. (1974 and 1975) employing low FeCl₃ concentration and high retention time for leaching while, Nagaraj et. al. (1978), Illagovan et.al(1985) opting for high FeCl₃ concentration and low retention time for leaching.

4. Conclusions

Optimization of Bench scale acidic ferric chloride leaching of copper concentrate obtained from flotation tests on a low grade copper ore from Mine dumps of Chitradurga, Karnataka have been carried out by statistically designed experiments. Factors like size, leaching time, Ferric chloride concentration and reactant weight ratio, have been varied. About 90% of copper was leached out from copper concentrates assaying 23.00% Cu, 6.68%SiO₂, 2.60% Al₂O₃, 4.20% CaO, 3.20% MgO, 4.31% Alkalis, 26.46% Fe (T), 24.90% S(T) and 0.45% Zn under optimum conditions -100 mesh, 6 hours leach time, 6 M FeCl₃ Concentration, pH 2, 2.70 FeCl₃/CuFeS₂ weight ratio, 95° C and 200 rpm agitation.

References