Hyperbolic KÄHler Manifold with Constant Holomorphic Sectional Curvature Tensor

B.B. Pandey
Swami Vivekanand College Of Management and Technology Gaulapar, Haldwani, (Nainital) Uttrakhand, India.

Abstract: Almost hyperbolic Hermite manifold have been studied by Dube [2]. Almost hyperbolic contact \(\{g, \eta, \xi\} \) structure manifold have been studied by Dube and Upadhyay [3]. In this present paper I have obtained some results regarding to the constancy of holomorphic sectional curvature for hyperbolic Kahler manifold.

1. Introduction
Let \(M^n \) be a \(C^\infty \) real differentiable manifold of dimension \(n \), \((FM) \) be the ring of real valued differentiable function of \(M \) and \((FM) \) be the module derivatives of \((FM) \). Then \((FM) \) is a Lie algebra over the real number and the elements of \((FM) \) are called vector fields. Every Riemannian metric \(g \) associated with a general Riemannian manifold \(M \) defined an inner product in \((FM) \), which we write as \(g(X,Y) \) for \(X,Y \in (FM) \), and let \(g \) be symmetric. Let \(M \) be equipped with a \((1,1) \) tensor \(f \) which may be regarded as an \((FM) \) linear map \(f:F(M) \rightarrow (FM) \) which satisfies

\[
F^2 X = X
\]

Where \(I \) is identity. Such a manifold is orientable and even dimensional. \(M \) is almost hyperbolic Hermitian provided it is locally product and has a Riemannian metric for which

\[
G(FX, FY) = g(X,Y)
\]

In hyperbolic Kahler manifold \(\{M,g,F\} \) is of constant holomorphic sectional curvature \(C(m) \) at every point \(m \). Then the Riemannian curvature tensor of \(M \), \(R(X,Y,Z,W) \) is of the form

\[
R(X,Y,Z,W) = C(m)/4[g(X,W)g(Y,Z) - g(X,Z)g(Y,W) + g(X,FW)g(Y,FZ) - g(X,FZ)g(Y,FW) - 2g(X,FY)g(Z,FW)]
\]

For any vector \(X,Y,Z,W \in TM \). In a hyperbolic Kahler manifold, we have

\[
R(X,Y,X,Y) = 1/32[3Q(X+FY)+3Q(X-FY)-Q(X+Y)-Q(X-Y)-4Q(X)-4Q(Y)].
\]

For any vector \(X,Y \in TM \) where

\[
Q(X) = R(X,FY,X,FY)
\]

Let \((M,g,F) \) be a hyperbolic Kahler manifold, and let \(K(X,Y), R(X,Y,Z,W) \) and \(H(X) \) be the sectional curvature respectively for arbitrary vector \(X,Y,Z \) and \(W \) on \(M \) then the following identity

\[
R(X,Y,Z,W) - R(X,Y,FZ,FW) = 0
\]

Where \(f(X,Y) = g(FX) \)

Theorem (1.1): Let \((M,g,F) \) be a hyperbolic Kahler manifold of constant holomorphic sectional curvature \(C(m) \) at every point \(m \) of \(M \), then the Riemannian curvature tensor of \(M \) is of the form

\[
R(X,Y,Z,W) = C(m)/4[g(X,W)g(Y,Z) - g(X,Z)g(Y,W) + g(X,FW)g(Y,FZ) - g(X,FZ)g(Y,FW) - 2g(X,FY)g(Z,FW)]
\]

Proof: Since \(Q(X) = H(X) \| X \|^4 \), we have

a) \(Q(X+FY) = H(X+FY) \| (X+FY) \|^4 \)

\[
= H(X+FY)(g(X,X)+g(Y,Y))^2 + 4g(X,X)+g(Y,Y)g(X,FY)
\]

(1.6) b) \(Q(X-FY) = H(X-FY) \| (X-FY) \|^4 \)
Corollary (2.3): Let (M,g,F) be an Quasi hyperbolic Kahler manifold of constant holomorphic sectional curvature C(m) at every point m of M . Then the Riemannian Curvature tensor of m is of the form :

\[R(X,Y,Z,W) = C(m)/4[g(X,W)g(Y,Z)-g(X,Z)g(Y,W)] - 2g((D_Xg)Y,(D_FZ)W) + 1/2[g((D_Xg)Y,(D_FZ)W) - 2g((D_Xg)Y,(D_FZ)W)] + 1/8[2g((D_Xg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F]

When (M,g,F)reduced to a Nearly hyperbolic Kahler manifold ,then we have

\[(D_Xg)(Y) = -(D_Fg)X \]

In this case we have the following

Corollary (2.1): If a nearly hyperbolic Kahler manifold (M,g,F) is of constant holomorphic sectional curvature C(m) at m∈M,then R(X,Y,Z,W)is the form :

\[R(X,Y,Z,W) = C(m)/4[g(X,W)g(Y,Z)-g(X,Z)g(Y,W)] - 2g((D_Xg)Y,(D_FZ)W) + 1/2[g((D_Xg)Y,(D_FZ)W) - 2g((D_Xg)Y,(D_FZ)W)] + 1/8[2g((D_Xg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F]

If (M,g,F) is almost hyperbolic Kahler that is

\[(D_Xg)(Y) + (D_Fg)(Z) + (D_Dg)F)(X) = 0 \]

then we have

Corollary (2.2): Let (M,g,F) be an almost Kahler manifold of constant holomorphic sectional curvature C(m) at every point m of M,then the Riemannian curvature tensor of m is of the form :

\[R(X,Y,Z,W) = C(m)/4[g(X,W)g(Y,Z)-g(X,Z)g(Y,W)] + g((D_Xg)Y,(D_FZ)W) + 1/8[2g((D_Xg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F]

-1/16[2g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F]

-1/16[2g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F] + g((D_Dg)F)(D_Fg)Z(D_Dg)F]
REFERENCE:

1. Bhatt, L. and Dube, K.K.: Hypersurface of hyperbolic Hermitian manifold-I, II (comm..)