Strength Properties of A Bacterial Cement Mortar When Cement Partially Replaced With Flyash And GGBS

Etaveni.Madhavi¹, S.B Sankar Rao² Gaddam Swarna Malika²
¹ Research Scholar, KLU and Assistant Professor, Civil Engineering, Sri indu Engineering College, Telagana, India.
² Hod Civil, Sri indu Engineerin College, Telagana, India.
³ Assistant Professor, Civil Engineering, Sri indu Engineering College, Telagana, India

Abstract The objective of this research work is to reduce the cost of the construction. Nowadays the industrial wastes are rapidly increasing more. To utilize such materials and reduce such type of waste in environment. The cement is replaced by the GGBS and fly ash with bacteria of $10^4, 10^5$ and 10^6 bacillus pasteurii in (1:3) mix. The GGBS and fly ash as taken in the proportions of 10% by weight of cement. From this research the results are much better as compared to the convention concrete.

Key Words: GGBS 1, flyash2, Bacullius Pasteurii3, Compressive Strength

1. INTRODUCTION

The main problem facing now a days is the environment problem. The ordinary Portland cement is an very important material in the construction industry. However, the cement contains the pollutants the utilization of the cement will cause the pollution to the environment. The grading of cement is done by the compressive strength of the material in the time period. The grading of cement are 43 and 53. In this research 53 grade of cement is taken. Bacterial concrete is a concrete mix in which bacteria is added.

The present paper work is aims to study the strength characteristics of a bacterial concrete using GGBS and fly ash with fixed proportions. Also aims how to reduce the cost of the construction.

2. MATERIALS USED

2.1 Cement

In this experiment 43 grade ordinary Portland cement is used. The testing of cement is done as per IS …. Code the specific gravity of cement found is 3.10.

2.2 Fine Aggregates

In this experiment the locally available sand is used and the specific gravity of fine aggregate is done by using the IS 2720 part 3 code. The specific gravity is found 2.62. The fine aggregates used which passes through the 4.75mm sieve.

2.3 Course Aggregates

In this experiment the locally available fine aggregates are used and the specific gravity of course aggregate is done by using the IS2386 part 3 1963 code. The specific gravity is found 2.84. The course aggregates which are used of 20mm size.

2.4 Bacteria

In this research the bacillus pasteurii bacteria is used. Sporosarcina pasteurii formerly known as Bacillus pasteurii from older taxonomies is a bacterium with the ability to precipitate calcite and solidify sand given a calcium source and urea, through the process of microbiologically induced calcite precipitation or biological cementation. Bacillus pasteurii has been proposed to be used as an ecologically sound biological construction material.

2.5 Water

The least expensive but the most important ingredient of concrete is water. The water which is used for mixing concrete should be clean and free from harmful impurities such as oil, alkali, acid etc. portable water was used for mixing and curing work.

2.6 Properties of GGBS

Ground granulated blast furnace slag is obtained by the quenching molten iron slag from a blast furnace in water, to produce a glassy, granular product that is then dried and ground in to a fine powder. Table 1 will show the properties of GGBFS.

2.7 Properties of Fly ash
Flyash is a siliceous material obtained by the thermal plants, is used as the partial replacement of cement. The properties of the fly ash was analysis by the IS code 3812-1981. Table 2 will shows the properties of fly ash.

3. TESTS 3

3.1 Compressive strength 1

The test is done for 28days and the size of the cube 70.6mmx70.6mmx70.6mm. The concrete mix design is carried out for (1:3) mix grade. The cubes are tested on 2000KN capacity universal testing machine. Compression test has been conducted confirming to IS 516-1959(5), on the concrete specimens in the universal testing 200MT. in this test cube is placed with the cast faces not in contact with the platens of testing machine. Load has been applied at a constant rate of stress equal to 15mpa/min according to the relevant IS code and the load at which the specimens failed has been recorded. Thus from the results, the compressive strength is obtained.

4. RESULTS 4

4.1 Compression Test 1

In this study the cubes are prepared without bacteria conventional concrete totally 6 cubes those are tested for 7days and 28days. Mortar with bacteria for 4 different age periods for every age period 3 cubes are casted. Bacterial concrete with fly ash and ggbs also casted. The size of cube is 70.6mmx70.6mmx70.6mm. The most and useful parameters is compressive strength because it is a desirable characteristic of concrete properties and also quantitatively related to compressive strength. The bacterial concrete strength is increased when compared to normal concreted. Bacterial concrete with flyash and ggbs is decreased to conventional concrete. The compressive strength for both conventional and bacterial concrete is in table as well as bar charts.
5. CONCLUSIONS 5

A. Based on the present experimental investigation the following conclusion are drawn

- Addition of bacillus pasteruii in different cells per ml the 10^6 per ml has got good results when compared to conventional as well as different cells per ml.

- The compressive strength of a bacterial mortar is increased by 10% compare to normal concrete or conventional concrete.

- Addition of fly ash with bacterial mortar is also increased by 14% compare to normal or conventional concrete.

- Addition of GGBS with bacterial mortar is also increased by 18% to 20% as compared to normal or conventional concrete.

ACKNOWLEDGEMENT
I thank Mr S.K.Chandra sir for giving support for my research work.

REFERENCES

10. Yingzi Yang, Michael D. Lepech, En-Hua Yang, Victor C. Li, ‘Self-healing of Engineered Cementitious Composites (ECC)’ Department of Civil and Environmental Engineering University of Michigan, Ann Arbor, MI 48109-2125, USA, 2009. (10)

