Development of MEMS Controlled Artificial Arm for Stroke Survivors and Real Time Monitoring

Ajeeth kumar V, Aravindh R, Arun kumar G, Gowthaman A
Department Of Electronics and Communication Engineering, Kings College Of Engineering Punalkulam, Thanjavur.

Abstract — the main objective of this artificial arm is to replace, as close as possible, the functional capacity formerly held by limb deficient person. The art of life is to show your arm and Hand. Various existing designs are available based on mechanical, electrical and electro-mechanical. In all such existing designs remain the numerous drawbacks, such as complex mechanical setup, sensitive sensors and improper recognition of objects. Another factor that includes with it is cost which is basically on the higher side.

In this paper, we design an artificial arm with lightweight materials with tilt function, which enable to do the basic operation such as lifting the arm and to monitor the blood flow movement. These operations are identified and controlled based on surface MEMS accelerometer which is fixed on another non affected arm. This will reduce the cost and complexity of the design. This can be improved further for more operations.

I. INTRODUCTION
The Arm and hand are very most important part of human life. People who suffer from the stroke feels the pain of lost and face many difficulties in daily life. The loss of limb has great impression on the person’s social status which affects worse, as well as the mental pressure they felt. Many options are available by today’s technology which helps the person. The cost is one of the factor, that gives how well the arms and limbs perform and how cosmetically appealing with the looks and other factors includes the skills that the technicians have to make the arm and limbs, and the materials for fabrication. These give the properly fit device which shows the result of a close working relationship between the prosthetist and the patient. Ultimately, the design and fit of the socket to fit that arm in body is what determines the patient’s acceptance, comfort, suspension, and energy they spend.

There are technologies to replace the loss of arm, but all these holds difficulties and drawbacks.
1. It helps to reduce treatment time.
2. It helps to minimize medical assistant.
3. It helps to provide self-monitoring system.
4. It also helps to release artificial attack...

II. LITERATURE REVIEW
In this paper, we are going to present a detailed study of artificial arms which are available in various designs. Some of the existing systems is the myoelectric arms1, VAEDA gloves. It uses EMG signal for its stimulation from the stump of the amputee. Those myoelectric signals are pulled out from the surface of the muscles using electrodes. The movement of the arms is generated by using the microcontroller. This system uses EMG in electrical control system and linear approach in mechanical system. When definite muscle group gets contracted it provides the grasping functionality. Like this for each activity some corresponding functions should be stimulated. These type of arms are used for physiotherapy treatment for stroke affected patients.

This system provides a light weight and compact myoelectric Arm in which the myoelectric signals are read by the myo-electrodes. These myoelectric signals are amplified and processed to measure the muscles electricity. Using suitable sensors these EMG signals2 can be acquired. The processed Signals are designed to control the degree of freedom in artificial limb. EMG signals are usually of low amplitude (10Hz-500Hz) which contains user intention information. For different motions of user, multiple EMG channels are used to acquire each data using corresponding electrodes.

In some systems disc electrodes (Ag/AgCl) are used. It should be placed on the surface of the forearms by using a conductive paste. When there is a change in the fore arm muscles there evokes an action potential due to the large fibers in the fore arms. The EMG signal is allowed for amplification, filtering and rectification. The final processed signal is given to microcontroller and using ADC, the analog signal is converted to digital one. The output
from the microcontroller is used to drive the servo motor for intended functions. The motors are controlled by the external driver circuits. The output of the motor makes the artificial arm to rotate with corresponding functions.

The drawbacks of this existing system are as follows. The EMG sensors is unreliable due to the artifacts, where connectors and wiring breakage can often occur. There is an inconvenience in donning and doffing of electrodes and the maintenance of skin should be difficult. Due to these drawbacks this system is not so popularized in the market.

The artificial arm based on this approach consists of five arm liftings which are designed to do the six functionalities. A DC gear motor is embedded in the palm which forms the grasp modes by its inward and outward movement. The material used for the fabrication of skeletal structure is Nylon. When compared with Teflon, Steel and Aluminum nylon is the best suitable and cost effective than all materials.

This system has a very complicated design. It takes long time to mimic the natural arm. It is unable to implement the aduction and apduction functions. The mechanical set up is difficult to understand by common persons and need technical assistance. It also provides less comfort to the patients.

III. RELATED THEORY
Artificial arm based on Biomimetic design is another existing system. In this system the artificial arm mimic the natural arm. This artificial arm is designed by comparing it with the functions and properties of the natural arm. This system is also based on the EMG signal for its function. It has 15 degrees of freedom. It is designed to give six grasping functionalities of arm such as to give power to hold an object, Palm-up, to act as hook, Oblique, Precision and to pinch.

This Biomimetic approach is used to overcome the poor functionality and low controllability of the previous systems. Based on this approach an upper limb artificial arm controlled by EMG signal is designed. Some systems provide an exoskeleton format which is like shown in figure 1 below.

The above stated designs hold drawbacks and also, lot of the models are considered and designed only for the lower limb and arm control only which is a major draw. Also no other simple systems exist to provide easy way of physiotherapy treatment, which is still a hazard to the patients, in the mean of amputation. To relieve them from all these, we propose this design of MEMS controlled artificial arm.

IV. METHODOLOGY
The main problems for artificial limb in most of the countries are having lack of skilled persons to update, no proper construction for fitting, and aligning, and for wearing it up and removing without hurting which needs more training. Though there are more demand for this, there is a very few training mobilized. Studies by the World Health Organization (WHO) indicate that while the current supply of technicians falls short by approximately 40,000, it will take about 50 years to train just 18,000 more skilled professionals. The other factors to be kept in mind are the cost factor, this is important to be analyzed for the society. And for individual satisfaction, cosmetic issue will also lay its arm. To overcome all the difficulties in the existing method, in this paper we have implemented a new design of artificial arm with two arm liftings, which implements fundamental motions, such as arm lifting and self-controlled movement which requires no assistance, which is required.

In order to control the lifting of the developed Artificial arm independently, an identifier which recognizes the arm lifting motions based on the surface MEMS accelerometer, and recognition rate of the arm lifting motions was examined. And an adaptive sensor is used to recognize the object.
An accelerometer is a device that measures the vibration or Acceleration of motion of a structure that measures the changes in speed of anything that is mounted on it. It is an Electro-mechanical device that measures acceleration forces which may be static like the constant force of gravity pulling at our feet, or they be dynamic could be caused by moving or vibrating the accelerometer. The MEMS sensor used in this is accelerometer whose axis is used for doing the fundamental action. The Accelerometers are available in one, two or three axes. Here we are using with two axes. When the axis is X then it does the action of grasping and if the axis is Y then it does the action of holding. To identify the object, that is, to recognize the object we implement an adaptive sensor for the identification operation. The microcontroller used here is PIC, which has the inbuilt analog to digital converter and helps for the UART interface.

This proposed method can be further improved for many more operations. This method is an advanced vision of the existing Systems that has a drawback in sensitive sensors such as myoelectric sensor and complex training procedures with non-recognition problems. The person with both arm amputations can use this low cost device for their fundamental operation, Grasping and Lifting. This will replace their natural arm loss 80 percent. Thus it will be one of the best designs of the artificial arm so far implemented.

MEMS accelerometer

Most accelerometers are Micro Electro Mechanical Sensors (MEMS). The basic principle of operation behind the MEMS accelerometer is the displacement of a small proof mass etched into the silicon surface of the integrated circuit and suspended by small beams. Consistent with Newton’s second law of motion (F = ma), as an acceleration is applied to the device, a force develops which displaces the mass. The support beams act as a spring, and the fluid (usually air) trapped inside the IC acts as a damper. Under the influence of external accelerations the proof mass deflects from its neutral position. This deflection is measured in an analog or digital manner. Most commonly, the capacitance between a set of fixed beams and a set of beams attached to the proof mass is measured.

The MEMS accelerometer sensor is shown above. The sensor is made of spring loaded, micro machined structure, mounted on silicon base. Force on the structure changes the position of seismic mass attached on the spring. This deflection is measured using fixed plate capacitor sensors. The change in acceleration unbalances capacitor plate distance, observed by modulation/demodulation circuits and thus, resulted in output proportional to acceleration. The sensing can be static (gravity) or dynamic (forced acceleration). The MEMS accelerometer which is used in this is ADXL330 which are low cost, low power, complete 2axis accelerometers with a measurement range of either ±2 g/±10 g. The ADXL330 can measure both dynamic acceleration (e.g., vibration) and static acceleration (e.g., gravity). The outputs are digital signals whose duty cycles (ratio of pulse width to period) are proportional to the acceleration in each of the 2 sensitive axes.

Working Process:

The objective of our work is to design an artificial arm that has two arm liftings which can do two fundamental motions, such as grasping and lifting operation. To accomplish our objective, we have designed using the MEMS accelerometer that acts as the identifier of the fundamental motions such as grasping and holding. Figure 2 depicts the block...
The below block diagram shows the positive and negative values of the MEMS sensor which have been tested to lift the arm and to work in slower manner when value reached.

MEMS VALUES THAT ARE IDENTIFIED AND TESTED

<table>
<thead>
<tr>
<th>X (Upper limb up)</th>
<th>X (Upper limb down)</th>
<th>Y (Upper limb up)</th>
<th>Y (Upper limb down)</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.50</td>
<td>-58.50</td>
<td>90</td>
<td>-90</td>
</tr>
<tr>
<td>80</td>
<td>82</td>
<td>115</td>
<td>-115</td>
</tr>
<tr>
<td>64,65</td>
<td>-64,65</td>
<td>116</td>
<td>-116</td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td>124</td>
<td>-124</td>
</tr>
<tr>
<td>78</td>
<td>-78</td>
<td>136</td>
<td>-136</td>
</tr>
<tr>
<td>98</td>
<td>-96</td>
<td>142</td>
<td>-142</td>
</tr>
<tr>
<td>98</td>
<td>-98</td>
<td>150</td>
<td>-150</td>
</tr>
</tbody>
</table>

The flow of input signal from the sensor to the microcontroller is shown in the figure where the process shown in the figure 3, which will give a clean view of the signal process.

Figure-3

Flow of operation of signal

The Result may be similar to the natural arm operations. Further this technique can be implemented to all the arm lifting with various operations. Hand and thumb lifting is also possible by this method which is shown in above figure 3. The Real model of the arm is shown in below figure 4.
Addition of Real time health monitoring systems to the arm device by using the various sensors. The spo2 sensor which shows the oxygen amount in blood, PPG sensor is added to ensure the flow of blood inside the tissues. An external temperature sensor is added in order to maintain the body temperature levels. The information can be shown in the LCD display with the refreshing intervals of 1 minutes. It is a predicted model for the reference (shown above image), but the actual model may be varies depending upon the development and its size which is it is modified. Thus this method not only will relieve the person from the loss of arm, it will also reduce the cost and training period. And this can also be implemented in the field of surgery as an artificial arm.

V. CONCLUSION

The design of artificial arm using EMG signal and electrodes to control has been historically unreliable of the surface EMG sensor because of artifacts, wire breakage, inconvenience of doffing and donning electrode, maintenance of the skin condition, and repeatability of electrode placing. But our method is different in approach. It reduces the bulkiness and makes the control of arm easier and convenience. This not only can be used for the artificial replacement, it can also be used as robotic arm in surgeries too. It can also incorporate many further operations. Thus it is the apt design of artificial arm which can also been improved.

The health monitoring makes the patients peace of mind to know their body condition. And yet other designs have pros and cons. Our design of artificial arm will be able to make a wide difference among the society.

V. REFERENCES