Hazard Object Report to the Respective Authorities

Miss. Kothule Dhanashri Kailas, Mr. Sonone Vaibhav Punjaji, Miss. Jadhav Riya Sanjay & Miss. Sonwane Jayashri
MCOERC, Nashik, Pune, India

Abstract: We need to capture real time images of hazardous objects with their location and sync it with the server. The data captured from android will be shown on Google Maps using Google Maps API v3. This data will be available to corresponding departments of government. In existing system, people do not have any central platform where they can report all their issues. So government does not understand the exact problem and their location. In Proposed system, we are developing one central platform where all issues can be reported with their location to respective departments. The objective of the system is to send the images, audio or video related to issue to the respective departments of the governments. We are sending this using the web services and android device. Using this system, we can keep track of the ratio of complaints registered and issues which are unsolved.

Keywords— Hazardous, Global positioning system (GPS), Wireless Fidelity (Wi-Fi), Application programming interface (API), risk level

1. Introduction

Hazard reporting is an android application which is really useful for the people who want to do something for their society. Using this application the user need to capture real time images of hazardous objects with their location and sync it with the server. The data captured from android will be shown on Google Maps using Google Maps API v3. This data will be available to corresponding departments of government. In existing system, people do not have any central platform where they can report all their issues. So government does not understand the exact problem and their location. In Proposed system, we are developing one central platform where all issues can be reported with their location to respective departments. The objective of the system is to send the images, audio or video related to issue to the respective departments of the governments. The user sending this using the web services and android device. Using this system, we can keep track of the ratio of complaints registered and issues which are unsolved.

2. Literature Survey

The main objective of this work is to demonstrate a real-time field data collection method to students using their mobile phones to collect field data in a timely and handy manner, either in individual or group surveys at local or global scale research. Geospatial data collection is one of the important tasks for many spatial information users. Geospatial data collection may include remote sensing data, field data and other in-house GIS data conversion processes (i.e. scanning, geofencing, digitizing, etc.). Among them, field data collection is one of the first steps for spatial information users, especially for geographers, geologists, biologists, crop scientists, ecologists, etc. Field data collection is required for several reasons, such as collecting Ground Control Points (GCPs), ground truth data collection for result validation, collecting soil contaminated sites, plant or animal species, and gathering public opinions for retail market analysis in order to analyze the spatial distribution patterns of objects and information on their associated attributes.

Accurate field data collection is also necessary for adequate spatial data analysis and proper decision making. Traditional field data collection (i.e. pen-and-paper based) is a time consuming and bulky task. For example, we need to prepare basemaps, collect an ancillary dataset, and other paperwork. This is not practical to use in real-time disaster information collection, which occurs in unpredictable places and requires a quick emergency response. However, recent developments in mobile communication Global Navigation Systems, the Internet and portable computational devices such as Netbooks or Ultra Mobile Personal Computers (UMPC) allow us to conduct field data collection in a timely manner. Moreover, under the client-server setting for field data collection, a field user may take advantage of digital repositories prepared for data collection (i.e. basemaps, satellite images and other ancillary data), as well as information resources more generally available via the Web.
3. SCOPE OF THE PROJECT

1. Android Application
 1. Design and creation
 2. Web Services Design
 3. Android layout design in XML
 4. Login with user ID & Password as well as IMEI
 5. Multiple Image capture logic
 6. GPS integration

2. Dynamic Web Application
 1. Database Design in MongoDB
 2. GUI Design
 3. Servlets and JSP

4. PRODUCT PERSPECTIVE

 When the user capture the image or video and it will send to the server at that time if server will not take the action then this is wastage of efforts to solve this problem. We need to implement the system which take the action on sending images of user and if the action is not taken then server will send to this images to media. Cost and time of the system is equal to cost and time to required for taking the action And it is guarantee that the action will be taken by MNC when the media will create the issue.

5. PROPOSED SYSTEM

This architecture shows overall description of our system. We need at least one android mobile device and a dedicated server to host the application. Dedicated Server is used to store the data. Dedicated server should have MongoDB installed on it to handle the database part.

We are using dedicated server for good performance in android development we are designing the database using SQLite. When the user sends image to the authorities they also send some data which gives description about the particular disaster. The data sent will be encrypted data so that only sender and receiver will understand the data. Here we are using Encryption-Decryption algorithm. For developing the web application for this system the developers are going to use the MongoDB as a database so that the user can also send the videos regarding to particular disaster. Google map APIv3 is used to attached the location with that image so that the concerned

6. RESULT_SET

The figures are described the logical characteristics of each interface between the software product and the user. This includes the sample screen images, any GUI standards or product family style guides that are to be followed, screen layout constraints, standard button and functions (e.g. help) that will appear on every screen, keyboard shortcut, error message display standards and so on.

1) The Fig 6.1 shows registration form of user where the user will be filled all the details and after filling the detail the user login id and password will be created.

![Fig 6.1: User Registration Form](image)

2) Fig.6.2 shows the login form of user side. The password and login id will be provided to user from where the user will be send their issues or problem to the system.
3) Fig. 6.3 shows the User inbox where the options are available that is what type of problems send the user, problem is solved or not and how many reports the user will be send.

4) Fig.6.5 shows the user will send their issues or problem in the format of image or video with the title and image/video description.

5) Fig.6.6 shows the registration form of authorities where to authorities have to register to the system. After Registration the login id and password will be created.

6) Fig.6.7 shows the login form of authorities where the login id and password will be provided. After login the authorities will see the generated reports which are sending by user.

7) Fig.6.8 Shows the report generation of problems/issue which send by user. This reports will help to authorities to where the problem will be occur, shows the location and also give the status that the problem is completely solve or not.
7. CONCLUSION

This system will help to solve the social problem of user. By using this system the authorities in the city or world will work properly.

We provide the platform to user to send their problem to authorities which will provide the solution of issue which send by user in the image/video format. We are using mongoDB database as a backend for report generation which improve the quality of system.

8. ACKNOWLEDGEMENT

We take immense pleasure thanking our college management for having permitted us to carry out this project work. Words are inadequate in o ering our thanks to our respected co-operation in carrying out project work in starting phase of the project like requirement analysis and literature survey .We also express our at most gratitude to Dr.G.K.Kharate Principal and Dr.V.H.Patil Head of department of Computer Engg. for this valuable co-operation in selecting the project topic and guiding us stepwise ahead.

Inspiration and guidance are invaluable in every aspect of life , especially in _eld of education , which we have received from our respected project guide Prof.G.D.Nikam who has helped a lot in two phase of project like topic selection the information gathering guide us to throughout project work and gave earnest co-operation whenever required. We would like to express sincere gratitude towards him.

At last , we would like to take this opportunity to convey thankst to all of my sta member , who directly orindirectly encouraged and helped us project work. Finally yet importantly , we would like to express heartfelt thanks to our beloved parents for gave blessing ,our friend/classmates for their and help and wishes.

9. REFERENCES

1. Web-Based GIS System for Real-Time Field Data Collection Using a Personal Mobile Phone Ko Ko Lwin, Yuji Murayama Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Received June 18, 2013; revised July 25, 2013.

