Filtering Unwanted Messages from Android Messaging Application

Miss Sapana Churare¹, Miss Gauri Banore², Prof. P.D.Kaware³
¹,²BE Final year CSE, HVPM COET Amravati, Maharashtra
³Prof, HVPM COET Amravati, Maharashtra

Abstract—Messaging Application are today one of the most popular interactive medium to share, communicate, and distribute a significant amount of human life information. Right now there is no mechanism present in today’s messaging app to filter the sensitive contents from messages. So the problem that arises in today’s messaging app is that anyone can spread rumors through the messaging app or anyone can use the sensitive words in the messages that are sent over the messaging app. So in propose messaging app, the problems that are arises in the today’s messaging app is overcome by filtering the sensitive words from the messages. Therefore we give messaging application, the ability to automatically control the messages sent from one android messaging app to another, by filtering out unwanted messages.

Index Terms—Android Application, Filtering.

I. INTRODUCTION

Messaging App are today one of the most popular interactive medium to share, communicate, and distribute an important amount of human living information. On a daily basis and continuous messages involve the swap of several types of content, including free content, image, audio, and video information. In our propose Messaging App, we are trying to filter the messages which may contains sensitive words. So the input to our Messaging App is the message which may contain sensitive words and in output we get the filtered messages which contain no sensitive words. For filtering we are using different filtering techniques in our Messaging Application. The Messaging App will automatically filter the messages. The aim of the present work is therefore to propose and experimentally evaluate an automated messaging app able to filter unwanted messages sent from one messaging app to another.

II. RELATED WORK

Online Social Networks (OSNs) are most popular interactive medium to share, communicate, and distribute a significant amount of human life information. In OSNs, information filtering can also be used for a different, more responsive, function. This is owing to the fact that in OSNs there is the possibility of posting or commenting other posts on particular public/private regions, called in general walls. Information filtering can therefore be used to give users the ability to automatically control the messages written on their own walls, by filtering out unwanted messages [1]. OSNs provide very little support to prevent unwanted messages on user walls. For instance, Facebook permits users to state who is allowed to insert messages in their walls (i.e., friends, defined groups of friends or friends of friends). Though, no content-based partialities are preserved and therefore it is not possible to prevent undesired communications, for instance political or offensive ones, no matter of the user who posts them. To propose and experimentally evaluate an automated system, called Filtered Wall (FW), able to filter unwanted messages from OSN user walls.

II. CONTENT BASED FILTERING

In content-based filtering each user is assumed to operate independently. As a result, a content-based filtering system selects information items based on the correlation between the content of the items and the user preferences as opposed to a collaborative filtering system that chooses items based on the correlation between people with similar preferences[5].

III. GOAL

Our goal is to design an online message filtering system that is deployed at the OSN service provider side. Once deployed, it inspects every message before rendering the message to the intended recipients and makes immediate decision on whether or not the message under inspection should be dropped.
IV. ANALYSIS OF PROBLEM

In existing messaging application user can send any sensitive messages form one mobile to another mobile, and spread various rumors related to particular topic. This is very problematic behavior in today’s environment. We are trying to create a messaging application which has some restriction on messages [3].

1. By using any sensitive words in messages, anyone can spread rumors through the messages sent from one android messaging app to another and this is very problematic behavior in today's society.

2. However, no content-based preferences are supported and therefore it is not possible to prevent undesired messages, such as political or vulgar ones, no matter of the user who sent them.

3. Providing this service is not only a matter of using previously defined web content mining techniques for a different application, rather it requires to design ad hoc classification strategies.

4. This is because wall messages are constituted by short text for which traditional classification methods have serious limitations since short texts do not provide sufficient word occurrences.

V. PROPOSED SYSTEM

The aim of the present work is therefore to propose and experimentally evaluate an automated messaging app able to filter unwanted messages sent from one android mobile to another mobile. In addition, the system provides the support for user-defined Blacklists (BLs), that is, lists of words that are temporarily prevented to be included in any kind of messages on an android messaging app. The basic working of our messaging app is that, if we are trying to send the message through this app to another person and if that message will contain the sensitive words, then that message will be automatically filtered out by the messaging app which uses some filtering techniques and the filtered message will be received by the receiver.

VI. FILTERING WALL ARCHITECTURE

The architecture in support of OSN services is a three-tier structure (Fig.). The first layer, called Social Network Manager (SNM), commonly aims to provide the basic OSN functionalities (i.e., profile and relationship management), where as the second layer provides the support for external Social Network Applications (SNAs). The supported SNAs may in turn require an additional layer for their needed Graphical User Interfaces (GUIs). According to this reference architecture, the proposed system is placed in the second and third layers. In particular, users interact with the system by means of a GUI to set up and manage their FR [2].

Fig. 1: Filtered wall conceptual architecture and the flow messages follow, from writing to publication

1) After entering the private wall of one of his/her contacts, the user tries to post a message, which is intercepted by FW.

2) FW uses metadata provided by the classifier, together with data extracted from the social graph and users' profiles, to enforce the filtering rules.
3) Depending on the result of the previous step, the message will be published or filtered by FW.

VII. FUTURE SCOPE

Future scope of this system is Image Filtering Techniques and also proposed new metric to evaluate how much messages found to be sensitive and non sensitive.

In our system we can only filter the text messages from user side but it’s not possible to filter images.

VIII. CONCLUSION

This paper proposed a system that has direct control to the user messages on their android messaging app. Existing system is used to filter unwanted messages from OSN wall which only work on windows platform. The aim of the present system is to filter unwanted message from android messaging app using pattern matching through black list.

IX. REFERENCES


