Survey on Keyword Processing According to Rank in LBSP (Location-Based Service Providers)

Apeksha B. Nachone¹ & Karuna G. Bagde²
¹Student, CSIT, HVPM’s COET, Amravati
²Professor, CSIT, HVPM’s COET, Amravati
SGB Amravati University, Maharashtra, INDIA

Abstract: LBSP i.e location based service provider calculates distance from source to destination within minimum amount of time. In past time we use TA i.e threshold algorithm for answering top k query. Data Collector, Data Contributor, LBSP and Geocode are four modules used in location based service provider. Data contributor are people who submit their review. These review are called as POI. Data collector collect review or their POI from data contributor. There are large number of data collector like google, bing, twitter, Facebook, yahoo who collect large number of POI from users. Geocode is class who calculate exact distance from latitude and longitude number.

Key Words: LBSP, POI, Geocode, Data contributor, Data collector, bing.

1. INTRODUCTION:
 For answering top-k queries the most perfect and efficient algorithm used in past decade is the Threshold Algorithm (TA). Generally, TA may still allow useless accesses to the lists. In this paper, we propose new algorithms which perform faster, that proposed algorithm is best position algorithm (BPA) which executes top-k queries more fastly and efficiently than TA. The execution cost of best position algorithm is always less than TA. For example, one may search for the best 10 medicals with the highest ratings within five miles of his current location. This paper focuses on spatial top-k queries. Continue with the medical example, the data sets at individual LBSPs may not cover all the medicals within range. Additionally, the same medical may receive different ratings at different LBSPs, so users may get confused by different query results from different LBSPs for exact same query. Reason for small data sets at individual LBSPs is that people tend to leave reviews for the same POI at one or at most only a few LBSPs’s websites which they often visit.[5] Second, LBSPs may modify their data sets by deleting some reviews or adding fake reviews and return tailored query results in favor of the medicals that are willing to pay or against those that refuse to pay. Even if LBSPs are not malicious, they may return unfaithful query results under the influence of various attacks such as the Sybil attack, whereby the same attacker can submit many fake reviews for the same POI.[4]

1.1 Motivation
 The LBSPs regularly have little information sets including POI audits. This would to a great extent influence the helpfulness and in the long run impede the more common utilization of spatial top-k question administrations. A main purpose behind restricted information sets at individual LBSPs is that individuals tend to leave surveys for the same POI at one or at most just a couple LBSPs' sites which they frequently visit. LBSPs may alter their information sets by deleting a few surveys or including fake audits and return customized inquiry results for the users.[4]

1.2 Objectives
 - To propose three novel schemes to tackle the special top k query processing challenge for fostering the practical deployment and wide use of the envisioned system.
 - The key idea is that the data collector pre-computes and authenticates some auxiliary information about its data set, which will be sold along with its data set to LBSPs.
 - To faithfully answer a top-k query, a LBSP need return the correct top-k POI data records as well as proper authenticity and correctness proofs constructed from authenticated hints.

1.3 Scope
 - The user provides his query to the LBSP. The LBSP process that one and provide response to the user.
 - It can directly use as for the improvement of LBSP working.
 - It uses to process request fast and manage the accuracy of the result in LBSP.

II. Proposed Methodology

A. Best position Algorithm-
Request set \{r_1, r_2, \ldots, r_n\} place by the data contributors set \{dc_1, dc_2, dc_3, \ldots, dc_n\}.

1. Each request transfer to the server with its time stamp and ip address.

2. The request comes from various nodes with their ip addresses set \{ip_1, \ldots, ip_n\} and latitude and longitude \{L_1, \ldots, L_n\}.

3. The temporal index of request is built.

4. The request will match with the datasets \{d_1, \ldots, d_n\}.

5. If\((d_n = r_n) \) then
 Form the array of result set \{ar_1, \ldots, ar_n\}
 Distance index
 Ranking index
 This computation will create a final result

Where
\(r_1, \ldots, r_n = \) Request, \(dc_1, \ldots, dc_n = \) data contributors, \(ip_1, \ldots, ip_n = \) ip addresses, \(L_1, \ldots, L_n = \) lat/logi
\(ar_1, \ldots, ar_n = \) array of result

III. Features
- Compared to previous method proposed method require less time for giving result.
- Result filtering
- Get more accurate information for users query.
- Faster retrieval of information.
- Remove obstacle such as vocabulary gap.

IV. Results and Discussion

Following Fig. shows the screenshot of Homepage. In homepage we have given login form on left hand side, if we are already registered to system otherwise we have given new registration link for registration purpose. In middle of page we have given set location link where we have to set location where we are exactly located and then search for medicine. By default we have given result according to distance wise but we can also choose ranking option to get result ranking wise.

Fig. 1 Screenshot of Homepage

Below we have given the output for homepage. When we set location i.e the place where user is and add the medicine which we want to search, we get result according to distance. By default system run on distance basis. If we want output according to rating we have to choose rating option.

Fig. 2 Screenshot of output of Homepage

Following Fig. shows the screenshot of Registration Form for Medical Owner. In registration form, we have set certain information like medical name address of that medical, licence no., contact detail of medical owner. After all this we have to upload image for that medical and also we have to set username and password. In this way we can register any medical.

Fig 3 shows the screenshot of Registration Form for Medical Owner

In fig 3, we have given availability of medicine at particular medical store. Medical owner can add medicine and its stock in his medical. He can also
select the availability of medicine from medicine table.

Fig.4 Screenshot of output for edit medicine.

Following fig shows list of bloodbank. In homepage we can see one link at upper side i.e bold bank. After clicking that link we can see availability of bloodbank its mobile number.

Fig.5 Screenshot of list of blood bank.

System Requirements:

Hardware Requirements:
- Processor: - Dual Core or more.
- RAM: - 1 GB
- Hard Disk: - 40 GB

Software Requirements:
- Operating System: - windows 7, windows8
- Web Browser: - IE6 or upwards, Google Chrome, Mozilla Firefox
- Front End: - ASP.NET, HTML
- Back End: - Microsoft SQL Server

V. Conclusion
In past days we use algorithm TA i.e threshold algorithm. TA may still incur a lot of useless accesses to the lists. In this paper, we proposed algorithms which stop much sooner and thus are more efficient than TA. And that algorithm is best position algorithm. BPA is not costlier than TA. For collaborative location-based information generation and sharing, a novel distributed system is used. By this approach, the queries are retrieved based on POI. The fake POI values and fake top most queries are removed by using secure feature like authentication. Thus this approach provides a secure and correct query.

REFERENCES